

Measuring Cosmic Ray and Atmospheric Neutrinos in the Sudbury Neutrino Observatory

neutrino.lbl.gov/~snoman/currat/talks/

Charles Currat LBNL

August 30, 2004

The Sudbury Neutrino Observatory

- ♦ SNO uses 1 kton heavy water + 1.7 kton water. Cherenkov light gathered by 9456 PMTs mounted on 17.8 m geodesic sphere.
- \bullet SNO located at a depth of 2092 meters under a flat overburden of 6010 mwe \Box cosmic muons ~ 80 events/day

Atmospheric neutrinos in SNO 1/2

Total Muon Flux

- ♦ SNO is of modest size \Rightarrow cannot perform contained events analysis, e-like/ μ -like \Rightarrow zenith angle distribution of muons (up vs down)
- \bullet For zenith angles $\theta_{\rm zenith} < 66^{\circ} \; (\cos \theta > 0.4)$, muons from cosmic-rays
- lacktriangledown For $heta_{
 m zenith} > 66^\circ$ \locktriangledown muons generated in neutrino interactions in the rock

-0.5

Deep location permits direct measurement of absolute neutrino flux horizon is clear (no model-dependent shape correction)

0.5

cos θ

Atmospheric neutrinos in SNO 2/2

- lacktriangledown By studying muon flux as $f(\theta_{\rm zenith})$ it is also possible to study neutrino oscillations
- ♦ Only events coming from below the horizon may oscillate ♀ distortion in angular distribution shape

- ♦ Simulation of neutrino-induced upward-going muons using Nuance (package for simulating neutrino propagation and interactions) according to Bartol flux up to detector's edge
- ♦ Interfaced with collaboration software for detailed simulation

Nuance to Snoman kinlO v3

♦ N.B.: given the size of SNO detector, most of the muons are through-going

Muon simulation 2/2

- ◆ Simulation of neutrino-induced upward-going muons using Nuance (package for simulating neutrino propagation and interactions) according to Bartol flux up to detector's edge
- ♦ Interfaced with collaboration software for detailed simulation

♦ N.B.: given the size of SNO detector, most of the muons are through-going

Muon measurement

Muon track reconstruction proceeds in 2 steps: (1) high charge cluster to locate exit point / (2) use of PMTs timing to reconstruct track direction

- lacktriangle typical error on impact parameter $\sigma_{b_{\mu}} \simeq 15$ cm
- typical error on direction $\sigma_{\theta} \simeq 1.5^{\circ}$
- \diamond systematic effects such as radial bias are corrected as f(impact parameter)

Reconstruction efficiency $\epsilon \simeq 1$ for energies $E_{\mu} \gtrsim 4$ GeV (stopping range \sim detector size) and for R < 7.5 m ($R_{\rm MAX} = 8.9$ m)

Projected sensitivity 1/2

Preliminary analysis with 150 days of data carried out in 2001 (courtesy of N. Tagg)

Prospect at SNO with 730 days of data simulated data set

 \spadesuit data point $(\Delta m^2, \sin^2\theta) = (5\times 10^{-3} \mathrm{eV}^2, 1)$

Projected sensitivity 2/2 ____

Projected sensitivity to atmospheric neutrino-oscillation parameters at SNO

- ... with 730 days of data (as of Winter 2003)
- ... with flux constraint
- ... data point $(\Delta m^2, \sin^2 \theta) = (5 \times 10^{-3} \text{eV}^2, 1)$
- ... MC study, statistical only

Possible muon calibration

Analysis in progress...

- ♦ Systematics (in track reconstruction) have strong impact on sensitivity studies
- ◆ Statistics really matter → improved fitter acceptance at large impact parameters is welcome
- ◆ Simulation and reconstruction algorithm to be tuned on independent data

Study feasibility of standalone muon tracker (with application at SNO) in progress

Recycling chambers used for HEP test beams (FNAL/IUCF/JLab). Some engineering work required for SNO needs (scintillator pads for trigger, support structure).

Location & coverage _____

- ♦ SNO is the deepest underground laboratory currently in operation and benefits from a flat overburden
- ♦ Muon flux as a function of zenith angle → neutrino oscillations ("shape")
- ◆ Muon flux as a function of zenith angle → absolute atmospheric neutrino flux ("rate")
- ♦ ... model-independent measurement
- Muon simulation and reconstruction are robust but further refinements/improvements would require independent calibrated data

- Muon tracker being setup for possible use at SNO
- ◆ Good number of present and future underground labs → portable muon flux monitoring device is appealing

Spare: On stopping muons _____

Stopping muons: very few muons stop in the detector (range is 18 m for $E_\mu=4$ GeV). About 13% of the upward-going muons do.

Multiple muons: approx. 3% of all muons, 90% of which are double muons.